Unconventional ubiquitin recognition by the ubiquitin-binding motif within the Y family DNA polymerases iota and Rev1.

نویسندگان

  • Martha G Bomar
  • Sanjay D'Souza
  • Marzena Bienko
  • Ivan Dikic
  • Graham C Walker
  • Pei Zhou
چکیده

Translesion synthesis is an essential cell survival strategy to promote replication after DNA damage. The accumulation of Y family polymerases (pol) iota and Rev1 at the stalled replication machinery is mediated by the ubiquitin-binding motifs (UBMs) of the polymerases and enhanced by PCNA monoubiquitination. We report the solution structures of the C-terminal UBM of human pol iota and its complex with ubiquitin. Distinct from other ubiquitin-binding domains, the UBM binds to the hydrophobic surface of ubiquitin centered at L8. Accordingly, mutation of L8A, but not I44A, of ubiquitin abolishes UBM binding. Human pol iota contains two functional UBMs, both contributing to replication foci formation. In contrast, only the second UBM of Saccharomyces cerevisiae Rev1 binds to ubiquitin and is essential for Rev1-dependent cell survival and mutagenesis. Point mutations disrupting the UBM-ubiquitin interaction also impair the accumulation of pol iota in replication foci and Rev1-mediated DNA damage tolerance in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ubiquitin-dependent regulation of translesion polymerases.

In response to DNA damage, TLS (translesion synthesis) allows replicative bypass of various DNA lesions, which stall normal replication. TLS is achieved by low-fidelity polymerases harbouring less stringent active sites. In humans, Y-family polymerases together with Pol zeta (polymerase zeta) are responsible for TLS across different types of damage. Protein-protein interaction contributes signi...

متن کامل

Structural Basis for Ubiquitin Recognition by Ubiquitin-Binding Zinc Finger of FAAP20

Several ubiquitin-binding zinc fingers (UBZs) have been reported to preferentially bind K63-linked ubiquitin chains. In particular, the UBZ domain of FAAP20 (FAAP20-UBZ), a member of the Fanconi anemia core complex, seems to recognize K63-linked ubiquitin chains, in order to recruit the complex to DNA interstrand crosslinks and mediate DNA repair. By contrast, it is reported that the attachment...

متن کامل

Molecular architecture of the Ub-PCNA/Pol η complex bound to DNA

Translesion synthesis (TLS) is the mechanism by which DNA polymerases replicate through unrepaired DNA lesions. TLS is activated by monoubiquitination of the homotrimeric proliferating cell nuclear antigen (PCNA) at lysine-164, followed by the switch from replicative to specialized polymerases at DNA damage sites. Pol η belongs to the Y-Family of specialized polymerases that can efficiently byp...

متن کامل

NMR structure and dynamics of the C-terminal domain from human Rev1 and its complex with Rev1 interacting region of DNA polymerase η.

Rev1 is a translesion synthesis (TLS) DNA polymerase essential for DNA damage tolerance in eukaryotes. In the process of TLS stalled high-fidelity replicative DNA polymerases are temporarily replaced by specialized TLS enzymes that can bypass sites of DNA damage (lesions), thus allowing replication to continue or postreplicational gaps to be filled. Despite its limited catalytic activity, human...

متن کامل

The unusual UBZ domain of Saccharomyces cerevisiae polymerase η.

Recent research has revealed the presence of ubiquitin-binding domains in the Y family polymerases. The ubiquitin-binding zinc finger (UBZ) domain of human polymerase η is vital for its regulation, localization, and function. Here, we elucidate structural and functional features of the non-canonical UBZ motif of Saccharomyces cerevisiae pol η. Characterization of pol η mutants confirms the impo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 37 3  شماره 

صفحات  -

تاریخ انتشار 2010